Tuesday, December 6, 2016

Are SuperEarths & Mini Neptunes Failed Gas Giants?


Authors:

Hasegawa et al

Abstract:

We explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. We model the failed cores' inward orbital migration in the low-mass or type I regime, to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1~au. Planets at this location exceeding about 3~M⊕ open a gap, decouple from their host trap, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. We synthesize the population of planets formed in this scenario, finding that some fraction of the observed super-Earths can be failed cores. Most super-Earths formed this way have more than 4~M⊕, so their orbits when the disk disperses are governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.

Monday, December 5, 2016

Atmospheric Characterization of Proxima b

Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph

Authors:

Lovis et al

Abstract:

Context.

The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra.

Methods.

We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. The use of the high-contrast/high-resolution technique can overcome present limitations by combining a ~10^3-10^4 contrast enhancement from SPHERE to a ~10^4 gain from ESPRESSO.

Results.

We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over 3 years considering optimal observability conditions for the planet.

Conclusions.

The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes and their instruments (abridged).

The Interaction of Terrestrial Exoplanet Oceans and Mantle


Authors:

Komacek et al

Abstract:

Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady-state after ∼2 Gyr. Using these steady-states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳0.3% of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady-state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

The Weirdness of Enigma Star KIC 8462852 (Tabby's Star)


Authors:

Makarov et al

Abstract:

We apply a PCA-based pre-whitening method to the entire collection of main Kepler mission long-cadence data for KIC 8462852 spanning four years. This technique removes the correlated variations of instrumental origin in both the detected light curves and astrometry, resolving intrinsic changes in flux and image position of less than 100 ppm and 1 mas, respectively. Beside the major dips in the light curve during mission quarters 8 and 16, when the flux dropped by up to 20%, we confirm multiple smaller dips across the time span of observation with amplitudes ranging from 0.1% to 7%. A variation of flux with a period of 0.88 d and a half-amplitude of approximately 90 ppm is confirmed in the PCA-cleaned data. We find that the phase of the wave is steady over the entire 15-month interval. We confidently detect a weak variability-induced motion (VIM) effect in the cleaned astrometric trajectories, when the moment-based centroids shift synchronously with the flux dips by up to 0.0008 pixels on the detector. The inconsistent magnitude and direction of VIM effects within the same quarter point at more than one source of photometric variability in the blended image. The 0.88 d periodicity comes from a different source, not from the target star KIC 8462852. We discuss a possible interpretation of the bizarre properties of the source as a swarm of interstellar junk (comets and planetoids) crossing the line of sight to the star and its optical companions at approximately 7 mas per year.

Sunday, December 4, 2016

DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION RESOLVED BY ALMA


Authors:

Lieman-Sifry et al

Abstract:

We present a CO(2-1) and 1240 μm continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0farcs5–1'' with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ~10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3σ) CO detections. Twenty disks were detected in the continuum at the >3σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.

SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS


Authors:

Ciaravella et al

Abstract:

The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

The asteroseismic potential of TESS: exoplanet-host stars


Authors:

Campante et al

Abstract:

New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the target stars (observed at a 2-min cadence) and the full-frame-image stars (observed at a 30-min cadence). A similar exercise is also conducted based on a compilation of known host stars. We predict that TESS will detect solar-like oscillations in a few dozen target hosts (mainly subgiant stars but also in a smaller number of F dwarfs), in up to 200 low-luminosity red-giant hosts, and in over 100 solar-type and red-giant known hosts, thereby leading to a threefold improvement in the asteroseismic yield of exoplanet-host stars when compared to Kepler's.