Saturday, March 15, 2014

A New Method for Giant Planets to Form

Core-assisted gas capture instability: a new mode of giant planet formation by gravitationally unstable discs

Authors:


Nayakshin et al

Abstract:

Giant planet formation in the core accretion (CA) paradigm is predicated by the formation of a core, assembled by the coagulation of grains and later by planetesimals within a protoplanetary disc. In contrast, in the disc instability paradigm, giant planet formation is believed to be independent of core formation: massive self-gravitating gas fragments cool radiatively and collapse as a whole. We show that giant planet formation in the disc instability model may be also enhanced by core formation for reasons physically very similar to the CA paradigm. In the model explored here, efficient grain sedimentation within an initial fragment (rather than the disc) leads to the formation of a core composed of heavy elements. We find that massive atmospheres form around cores and undergo collapse as a critical core mass is exceeded, analogous to CA theory. The critical mass of the core to initiate such a collapse depends on the fragment mass and metallicity, as well as core luminosity, but ranges from less than 1 to as much as ∼80 Earth masses. We therefore suggest that there are two channels for the collapse of a gaseous fragment to planetary scales within the disc instability model: (i) H2 dissociative collapse of the entire gaseous clump, and (ii) core-assisted gas capture, as presented here. We suggest that the first of these two is favoured in metal-poor environments and for fragments more massive than ∼5−10 Jupiter masses, whereas the second is favored in metal-rich environments and fragments of lower mass.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.