Sunday, January 11, 2015

Planetesimals in Protoplanetary Disks in Binary Star Systems

PLANET FORMATION IN STELLAR BINARIES. I. PLANETESIMAL DYNAMICS IN MASSIVE PROTOPLANETARY DISKS

Authors:

Rafikov et al

Abstract:

About 20% of exoplanets discovered by radial velocity surveys reside in stellar binaries. To clarify their origin one has to understand the dynamics of planetesimals in protoplanetary disks within binaries. The standard description, accounting for only gas drag and gravity of the companion star, has been challenged recently, as the gravity of the protoplanetary disk was shown to play a crucial role in planetesimal dynamics. An added complication is the tendency of protoplanetary disks in binaries to become eccentric, giving rise to additional excitation of planetesimal eccentricity. Here, for the first time, we analytically explore the secular dynamics of planetesimals in binaries such as α Cen and γ Cep under the combined action of (1) gravity of the eccentric protoplanetary disk, (2) perturbations due to the (coplanar) eccentric companion, and (3) gas drag. We derive explicit solutions for the behavior of planetesimal eccentricity e p in non-precessing disks (and in precessing disks in certain limits). We obtain the analytical form of the distribution of the relative velocities of planetesimals, which is a key input for understanding their collisional evolution. Disk gravity strongly influences relative velocities and tends to push the sizes of planetesimals colliding with comparable objects at the highest speed to small values, ~1 km. We also find that planetesimals in eccentric protoplanetary disks apsidally aligned with the binary orbit collide at lower relative velocities than in misaligned disks. Our results highlight the decisive role that disk gravity plays in planetesimal dynamics in binaries.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.