Monday, December 21, 2015

The UltraViolet Light Environment is VERY Important for Prebiotic Chemistry

Influence of the UV Environment on the Synthesis of Prebiotic Molecules

Authors:

Ranjan et al

Abstract:

Ultraviolet (UV) radiation is common to most planetary environments, and could play a key role in the chemistry of molecules relevant to abiogenesis (prebiotic chemistry). In this work, we explore the impact of UV light on prebiotic chemistry that might occur in liquid water on the surface of a planet with an atmosphere. We consider effects including atmospheric absorption, attenuation by water, and stellar variability to constrain the UV input as a function of wavelength. We conclude that the UV environment would be characterized by broadband input, and wavelengths below 204 nm and 168 nm would be shielded out by atmospheric CO2 and water, respectively. We compare this broadband prebiotic UV input to the narrowband UV sources (e.g. mercury lamps) often used in laboratory studies of prebiotic chemistry, and explore the implications for the conclusions drawn from these experiments. We consider as case studies the ribonucleotide synthesis pathway of Powner et al (2009) and the sugar synthesis pathway of Ritson et al (2012). Irradiation by narrowband UV light from a mercury lamp formed an integral component of these studies: we quantitatively explore the impact of more realistic UV input on the conclusions that can be drawn from these experiments. Finally, we explore the constraints solar UV input places on the buildup of prebiotically important feedstock gasses like CH4 and HCN. Our results demonstrate the importance of characterizing the wavelength dependence (action spectra) of prebiotic synthesis pathways to determine how pathways derived under laboratory irradiation conditions will function under planetary prebiotic conditions.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.